Numerical Solvability of a Class of Volterra-hammerstein Integral Equations with Noncompact Kernels
نویسنده
چکیده
We study the numerical solvability of a class of nonlinear weakly singular integral equations of Volterra-Hammerstein type with noncompact kernels. We obtain existence and uniqueness results and analyze the product integration methods for these equations under some verifiable conditions on the kernels and nonlinear functions. The convergence analysis is investigated and finally numerical experiments are given, which confirm our theoretical results.
منابع مشابه
Numerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function
A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملNumerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets Method
In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...
متن کاملALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کامل